Investigating Warp Size Impact in GPUs
نویسندگان
چکیده
There are a number of design decisions that impact a GPU's performance. Among such decisions deciding the right warp size can deeply influence the rest of the design. Small warps reduce the performance penalty associated with branch divergence at the expense of a reduction in memory coalescing. Large warps enhance memory coalescing significantly but also increase branch divergence. This leaves designers with two choices: use a small warps and invest in finding new solutions to enhance coalescing or use large warps and address branch divergence employing effective control-flow solutions. In this work our goal is to investigate the answer to this question. We analyze warp size impact on memory coalescing and branch divergence. We use our findings to study two machines: a GPU using small warps but equipped with excellent memory coalescing (SW+) and a GPU using large warps but employing an MIMD engine immune from control-flow costs (LW+). Our evaluations show that building coalescing-enhanced small warp GPUs is a better approach compared to pursuing a control-flow enhanced large warp GPU.
منابع مشابه
Accelerating DEM simulations on GPUs by reducing the impact of warp divergences
A way to accelerate DEM calculations on the GPUs is developed. We examined how warp divergences take place in the contact detection and the force calculations taking account of the GPU architecture. Then we showed a strategy to reduce the impact of the warp divergences on the runtime of the DEM force calculations.
متن کاملDynamic Warp Resizing in High-Performance SIMT
—Modern GPUs synchronize threads grouped in a warp at every instruction. These results in improving SIMD efficiency and makes sharing fetch and decode resources possible. The number of threads included in each warp (or warp size) affects divergence, synchronization overhead and the efficiency of memory access coalescing. Small warps reduce the performance penalty associated with branch and memo...
متن کاملInvestigating the Effects of Hardware Parameters on Power Consumptions in SPMV Algorithms on Graphics Processing Units (GPUs)
Although Sparse matrix-vector multiplication (SPMVs) algorithms are simple, they include important parts of Linear Algebra algorithms in Mathematics and Physics areas. As these algorithms can be run in parallel, Graphics Processing Units (GPUs) has been considered as one of the best candidates to run these algorithms. In the recent years, power consumption has been considered as one of the metr...
متن کاملImproved GPU SIMD control flow efficiency via hybrid warp size mechanism
High single instruction multiple data (SIMD) efficiency and low power consumption have made graphic processing units (GPUs) an ideal platform for many complex computational applications. Thousands of threads can be created by programmers and grouped into fixed-size SIMD batches, known as warps. High throughput is then achieved by concurrently executing such warps with minimal control overhead. ...
متن کاملInter-warp Instruction Temporal Locality in Deep-Multithreaded GPUs
GPUs employ thousands of threads per core to achieve high throughput. These threads exhibit localities in control-flow, instruction and data addresses and values. In this study we investigate inter-warp instruction temporal locality and show that during short intervals a significant share of fetched instructions are fetched unnecessarily. This observation provides several opportunities to enhan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1205.4967 شماره
صفحات -
تاریخ انتشار 2012